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SPACE TRAJECTORIES AND ERRORS IN TIME, 
FREQUENCY, AND TRACKING STATION LOCATION 

BY 


F. 0. Vonbun 

ABSTRACT 

The purpose of this paper is to show, in analytical fashion, how 
the errors  in tracking station time and frequency synchronization, 
aswell as the errors  in station location influence accurate trajectory 
determination. 

Two systems, which data are presently used for most of the more 
accurate orbit determination schemes, are described, namely, (a) 
a range and range rate system and (b) a radar system. Al l  other 
systems are really a combination of these two basic systems and are 
therefore not mentioned specifically in this report. 

Rather simple analytical expressions are derived relating meas
ing errorswith those of time and frequency synchronization, as well 
as ground tracking station location. 

For the range and range rate system, the error  in range rate 
( 6  i = 0.01 cm/s) is used as a "yardstick" and all other quantities 
are derived from it. For the radar system (not measuring range rate 
directly), the total local position vector, as measured by such a 
system, isused as the "yardstick" to determine the necessary time 
synchronization and station location accuracy. 

Numerical examples are presented which hopefully will show 
what accuracies of the mentioned quantities are needed for a good 
ground tracking system to make itsdata most useful for the determi
nation of accurate orbits and space trajectories. 
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SPACE TRAJECTORIES AND ERRORS IN TIME, 
FREQUENCY, AND TRACKING STATION LOCATION 

BY 

F. 0. Vonbun 

SUMMARY 

A. General 

Frequency (Doppler) or  even more proper, a phase determination over a 
certain time interval, is one of the few basic physical measurements which can 
be performed with extreme accuracy. If this quantity can be used for the deter
mination of orbits one would expect that these also will be very accurate. This 
indeed can be done and is used on an almost daily basis, particularly for deep 
space trajectory determination. 

In brief, the Doppler frequency experienced by a station receiving an electro
magnetic signal from a spacecraft is often used as a "measuring stick.ll One 
could also use, even more appropriately, as a measure of a system, an error 
quantity at a particular target. For instance, the closest approach to the moon 
or a planet should be within 100m or 10,000m, respectively. The problem with 
this approach is that system requirements may result which could not be met 
due to practical physical limitations such as systems noise, bias errors, tropo
spheric and ionospheric propagation disturbing the transmitted and received 
electromagnetic signals. This is the reason the range rate limited approach has 
been chosen here. In any event, the finalresults should almost be the same. 
Since, as mentioned, this llyardstickllis an extremely accurate one (Av/v t 
10-lo to per day), al l  other quantities involved have to have appropriate 
accuracies. Thus, in order to really exploit the Doppler measurement to its 
fullest as an example, the sender frequency has to be very accurate, the time 
synchronization between tracking stations as well as their location on the surface 
on the earth have to be determined to a "certain" degree. How much and how all 
these quantities and their errors  are approximately related to each other isout
lined in this paper. Coherent two or three way phase locked Doppler systems as 
well as radar systems are discussed. 

It should be pointed out here that a treatment of this nature, namely to 8s
tablish flreasonable*fdesign limits, cannot be a mathematical rigorous one. 
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Experience and judgement have to enter into redts  of this nature. Neverthe
less, it is felt that the values summarized w i l l  give the reader a good picture of 
the problems and their solutions. 

B. Relative Frequency Stability 

As can be noted from equation (9) one needs a relative frequency stability of: 

where the first term refers to the measured Doppler shift during the measuring 
time t ,the second term refers to the relative stability of the local standard 
oscilla?or over the time the signal travels from the station to the spacecraft and 
back, s i  = 0.01 cm/s, the assumed llyardstick,ll and i = 50 km/s is assumed for 
an average maximum interplanetary range rate. 

In addition, it should be noted that the value (Sc/c) has to be considered as 
an unknown in the orbit determination process in order to be able to %sel' the 
above value. 

C. Station Time Synchronization 

As can be seen from equations (12) and (13), one obtains for S t  = 0.1 to 0.2 
msec for the earth moon space using S i =  0.1 cm/s and the full earth accelera
tion ;o' = 1000 cm/s2 (a pessimistic value proper for near earth space). 

Similar 6 t 0.2 msec as the needed time synchronization error  for a radar 
depending on the assumed angular bias error  of the radar considered. Equations 
(16) and (17) and (17a) are applicable for this case. 

For interplanetary missions, where is small (in this case 40.6 cm/s2 
is the acceleration due to the sun for 1AU) even with S i =  0.01 cm/s (compared 
to 0.1 cm/s for near earth and lunar space) a value of S t  g 2 msec is adequate as 
given by equation (13). Only in the special case of a planetary approach or a 
planetary fly by, t h i n g  errors  of S t  10 to 20p sec seems to be needed. For 
this case however the method suggested by JPL, namely, using the orbit for time 
synchronization, can fulfillthis requirement without the use of additional equip
ment or methods. 

2 




D. Station Location Errors  

To fully utilize the Doppler error  of only 0.01 cm/s a station location 
accuracy of: 

-11 .5  to 5 .5  meters 

will be needed depending on the use of equation (25)or (25b). These numbers give 
a range to work toward in the future. 

In case of a radar system, a station error  range of 

4 3.5 to 11.0 meters 

will be necessary for future systems according to equation (28)and itsassociated 
assumptions. 

E. Freauencv Synchronization 

For a two-way Doppler system, similar values hold as stated under B above. 
In this case one cannot speak of frequency synchronization as such but more of 
frequency stability during the travel time of the electromagnetic signal. 

This is of course different for the three-way Doppler system as applied for 
lunar and planetary missions. 

As can be seen from equation (18), in order to make full use of the Doppler 
( 6 ;  = 0.01 cm/s) a, frequency synchronization between station 1 and 2 of 

is needed. Or  in brief, field worthy hydrogen masers will have to be developed 
and used. 

It should be pointed out that the errors  considered, namely, the errors  in 
frequency synchronization, tracking station time synchrodzation, and the errors  
in location of the tracking stations on earth are to be considered as bias errors. 
Obviously so, since a l l  these quantities stay approximately constant during the 
time when tracking measurements are taken and the orbits determined. 
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I. FREQUENCY STABILITY 

One of the first questions to be answered, when a coherent Doppler tracking 
system is to be designed, is: What frequency sfability of the transmitter is 
required? 

As can be seen by the schematic of Figure 1, the following principle * * 1'9 

is used to ttdetect*tthe Doppler frequency shift u 
D1 

for a two-way Doppler system. 

The multiplied frequency of a stable smrce uo is transmittedto the space
craft, received there, transplanted to insure no interference, retransmitted to 
the same ground receiving system together with the translation factor k, and 
finally fed into a mixer'. Here, the difference frequency (Doppler) between the 
signal sent to the spacecraft and received back on the ground is extracted as the 
Doppler vD . This Doppler is of course only as good as the oscillator is during 
the time thg signal takes to transverse twice (up and down) the spacecraft dis
tance r from the transmitting graund station. 

Thus, the frequency of the source has to be %onstanttt during this travel time 
27. What "constant" means here wi l l  be shown in the following. 

A. The Doppler Shift 

The special relativistic equation for the Doppler shift reads: 1I 2 3 4 

c 
u = Yo w 
where: Tj is the relative velocity between spacecraft and receiving station v = 

;c is the speed (scalar) of light; r the frequency at the spacecraft; uo the 
transmitted frequency, To the unit position vector from the station to the space
craft in the moving frame of reference. 

Further 

is the range rate of the spacecraft with respect to the tracking station. A similar 
equation holds for the return path as shown in references 1, 2, 3,and 4. After 
some manipulation, one obtains forthe ratio of the received frequency u1 and 
the transmitted frequency vo the following: 
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Figure 1-Two Woy Doppler System 
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The Doppler frequency for the so-called two-way mode vD 
2 

is known simply as: 

VD2 = (v'-vJ (4) 

The factor k can be assumed as 1 since this value is compensated for on the 
ground, as shown in reference 5, and therefore is of no interest for the principle 
involved. As mentioned, the frequency translation (k)was performed only to rid 
interference at the spacecraft. 

From equations (3) and (4) one obtains for the range rate: 

Equation ( 5 )  relates Doppler frequency uD, transmitter frequency v0,  speed of 
light c and the range rate i between spacecraft and transmitting stations in exact 
form as stated by the special theory of relativity. (Nogravitational terms are 
considered since these are small effectscompared to these used here.) 

B. The Relative Errors 

Equation ( 5 )  will now be used to answer the question of frequency stability 
using (d?/?)* as  a "yardstick." Since only small variations are to be considered 
and uD /u0 <<< 1equation (5) can be simplified for the following variational analy
sis that is: 

Varying equation (6) and adding the results in the Gaussian sense leads to 

____~ ~ 

*During the course of this paper normalized errors such as 6 J c ,  8;/;, ... etc., are often used 
for simplicity of the mathematical expressions. 

**Sign of Dopple frequency v,, is neglected from now on since it has no real meaning in the 
sense of a .negative" frequency. 
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This equation shows that the relative e r ror  Si/; one is making in the 
determination of i is dependent on the relative error in the speed of light S C / C ,  
the relative error  in the Doppler frequency SvD/u,,and the transmitter frequency 
6 ~ & ~ .Decreasing 6 < or 6 i /i means one has to reduce also all three other 

quantities accordingly. 

First, one has to improve the relative error  ( 6 d c )  of the speed of light (at 
present (Sc/c) = 3.10'7)6*7*8*9 then one has to be able to measure the relative 
Doppler frequency ( 6vD/vD) to at least the same accuracy. This means that: a 
certain measuring time t, ,and measuring time error  6 t, have to be secured 
to accomplish a frequency measurement to a given accuracy lo, that is: 

assuming that the quantities contributing to noise (noise modulation index, signal 
to noise ratio) are small enough compared to ( St,/tJ which is the case for the 
systems and methods considered here. 

Assuming as an example a carrier frequency vo = 2000 Mc a measuring time 
t, = 1 sec and an er ror  in the measuring time 6 t, = sec results in a value of 

In addition, of course, the transmitter standard oscillator has to be %onstantIt 
during the travel time 27of the electromagnetic wave from the transmitter to the 
spacecraft. Any shift during this time cannot be detected by the mixing process 
as shown in Figure 1 and described in reference 5 for instance. 

In brief, one needs: 

Assume, as an example, all  three quantith! are equal and are (a conser
vative value) than S i  = 6.10'6 r . For flights between the earth and the moon 
r.r = 3 km/s = 3.105 cm/s and thus Si = 1.0 cm/s which is at present ade
quate for plrposes of trajectory determination for the Apollo project for 
instance 7.8.11 through 16 . (Seealso Figures 2a, 2b). 
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Figure 2a depicts the instantaneousand propagated (to the moon) position error  
of a lunar transfer using a bias range rate error  of 1 cm/s plus a 1 cm/secnoise 
component superimposed. Station error8 as given in references 7 and 8 are also 
included to show realistic values as used for these Apollo Navigation studies. 
Figure 2b shows the same for the spacecraft velocity. 

For interplanetary flights one has to decrease the errors  in range rate in 
order to get a more reasonable trajectory. Figures 3a and 3b show the position 
and velocity errors  of a Jupiter probe as an example when tracked by a two-way 
Doppler system using three ground stations apprmdmataly 120° separated in 
longitude. The errors  of twenty days of tracking are shown, then these errors  
are propagated to 260, 458, and 500 days respectively (planets intercept) along 
the trajectory. This error  propagation is done in order to be able to determine 
if it is reasonable to make a midcourse maneuver say after 20 days of tracking 
based upon our range rate accuracy requirements discussed here. 

Since at present both W i t i e s  namely (6vD/vD) and (Sv, /vo) can be deter
mined far better than ( 6 =/cj one has to improve on the latter to improve (6 i/i) 
as shown by equations (7) and (7a). This should possibly be done by an orbit in
dependent method in a laboratory since the value of c and thus ( 6 c/c) can be 
ffcalculatedll(considered as an additional unknown in the orbit computation) to
gether with the orbit parameters station locations, etc. The problem involved 
here is that a l l  our constants are based upon the velocity of light within 3.10-' as 
quoted before 7. It s h d d  be noted that the velocity of light is one of the primary 
physical constants and really occupies a .'key positionftin astronomy l7 * . The 
velocity of light is involved via the "light timef1(time the light needs'totraneverse 
1AU, the heliocentric distance of the center of mass of the earth + moon system) 
with the solar parallax, the mean earth radius, the eccentricity of the earthorbit, 
the Gaussian gravitational constant, etc. This means in essence a l l  thesequanti
ties have to be changed accordingly to proper adjust our physical constants in 
the Universe in terms of distance, distance variation, t h e ,  etc17. 

For interplanetary flights l9 * 2o 1 21 values of 6 i = 0.02 cm/s have been ob
tained over a 1minute measuring time. Thus, using 0.01 cm/s as a ffetandardff 
one would need for i = 5.106 cm/s the following accuracies: 

Assuming a good S/N ratio of say l O d b  or more and Doppler measuring times in 
the order of minutes lo, atmospheric dieturbancee seem to be the only limiting
factors 19.20.21.22 

As shown in reference 22, this limit is in the order to 0.01 cm/s rms when 
elevation angles e 2 loo are used and daily tropospheric connection terms are 
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applied in the order of 6 N = *5 where N = (n-1) : and n is the index of re
fraction. The only unknown,quantity is ( 6  c/c) to the accuracy stated,thus abetter 
determination of 6c/c = 3.10-' as shown in reference 6 is needed. Laboratory 
measurements of the velocity of light will probably not reach an accuracy of l p  
10lo o r  better in the near future. One way to circumvent the er rorsof the f fhown~v 
value of c is to introduce this quantity as anunknown into the orbit determination 
process. 
II. STATION TIME SYNCHRONIZATION 

One of the next logical questions to answer is: To what accuracy should the 
time be synchronized between tracking station used for orbit determination? 

A relationship between the time error  6 t and the tracking quantities to be 
measured will be derived in the following. A CW range rate system and a radar 
system is considered since their time synchronization requirements aredifferent 
since different 'tyardsticksT'have to be used. (A radar does not "measure" i 
as such for instance.) 

A. pchronization Between Station Time and Orbit Time 

For orbit determination, the local or station measurements r, i, etc. (or any 
other measurement) are taken at a certain time t. These values are then trans
mitted from the station to the computing center and there used for orbit determi
nation. Thus, the station llclockllhas to be synchronized to the computing center 
%lockffto within a certain limit, say 6 t. What this value should be in order to 
make full use of our %tandardfl 6 i is shown in the following. 

1. For a CW Range Rate System 

Considering small deviations only one can write to a first order accuracy for 
the variation I! the following: 

since 

.. 6 r =-i,
6t 

where i'is the magnitude of the time derivative of the range rate i'and S t  is the 
time error  to be determined here. 

14 



The spacecraft inertial position vector (see Figure 4) is: 

and there accelerations are: 
.. -D .. 

-Dp = R + ? .  

Borrowing terms from vector analysis, that is, R' = (3x ) and further g=
(ZJ x (ZJ x z)) one obtains: 

Using (12a)and (10)one obtains approximately: 

Here  one has to remember two points, namely: 

(a) the range rate er ror  Si was previously assumed to be 0.01 cm/s based 
upon deep space mission results and 

(b) 	 range rate is NOT the only measurable used for orbit determination for 
near earth satellites except for the TRANET spacecraft. From experi
mental data such as our Goddard spacecraft as well as lunar orbiter 
evaluation a value of 6 i 2 1 cm/s seems to emerge. Improvements are 
on the other hand under way so that an assumption of d i  = 0.1 cm/s for 
earth and lunar space satellites seems reasonable for the near future. 
Using this value namely d i  = 0.1 cm/s and p = lo3 cm/s2 as the near 
earth and lunar space "yardstick" one obtains using (13)for 

6 t  =-0.1 = 10-4 sec = 100 p sec (13a) 
103 

The value I R'I = 3 cm/s2 has been neglected as compared to p -L 1 g f 
1000 cm/s2. 

For interplanetary travel, where the acceleration terms are small (in the 
order of a few cm/s*), timing errors  can be appropriately large as dictated by 
equation (13). 
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The value given in (13a) should then really suffice for most of our space 
tracking problems. 

The only time where more stringent requirements are to be considered is 
during a planetary approach as well as flyby missions. For such cases, thevalue 
given in (13a) may have to be eventually reduced to say 10 to 20psec. ( 2 
1000 cm/s2 ,6i = 0.01 cm/s). Here, on the other hand, single tracking stations 
are mostly involved for approximately 8 hours each day if necessary. The station 
time synchronization method as suggested by JPL (reference 27)can be applied 
for this case reducing the timing errors  to the above mentioned values without 
elaborate additional station equipment and or other (VLFetc.) methods. 

2. For a Radar System 

For near earth orbit calculations more than just i information (ornot at all) 
is used in many cases. Angular data (azimuth, elevation, o r  equivalent) and range 
data (radar) together are utilized to determine orbits for manned flight programs 
for instance" 1 2 .  In this case one can obviously not use i or  Si as a yard
stick, yet time er rors  do enter into the orbit analysis. They are but here some
what more relaxed as shall be shown. 

Assume a near earth spacecraft moves with say 10 km/s (during a lunar 
transfer orbit for instance) and the radar system would %"Tf in such a fashion 
that it would experience almost the full 10 km/s (pessimistic case). What would 
the time accuracy have to be to make the position measurement (;* a vector 
quantity) accurate to a certain predescribed number of meters (say 5 to 10m) ? 

In this case one can write (see Figure 4) 

4 - -I r = ro t v t  

Where y is the measured slant range vector at t = t (range r, azimuth a,eleva
tion E ) 2o is the initial position vector at t = 0 and ? is the velocity of the space
craft relative to the radar system. If the stations would be synchronized com

-.pletely, the value 2 = r at t = 0. This of course, 'canneverbe achieved. Therefore, 
varying equation (14) yields 

Considering all these er rors  one obtains in the Gaussian sense rearranging the 
terms and introducing r, a,and E : 
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or 


since 6 r2 and Sv2 2  (t is to be expected in the order of say msec or  less) aret 
always relatively small as experience has shown as compared to the middleterm, 
one can write simply for 

where 64 is the bias error  in elevation and azimuth assumed to be equal for 
reasons oHsimplicity. Equation (17)thus gives an estimate of the time synchro
nization needed for a good radar system. 

To quote an example, assume a near earth orbit with v A 8000 m/s, a radar 
slant range r = 200 km,and a elevation and azimuth bias 6 4 ,  = 0.02 mrad, than 
6 t = 0.5 msec. 

For near earth orbit determination, the angular measurements of a radar 
system play a major role particularly when only short measuring (tracking)times 
say in the order of 60 to 100 sec are available. In this case, one obtains 

where S E ,  is the bias error in the random elevation angle, v is the orbital speed 
of the spacecraft, h is its height, and &,, is the maximum angular acceleration. 
Equation (17a) represents a worst case overhead pass. Using again as anexample 
v = 8000 ms, h = 200 km, 6 E ,  = 0.02 mrad, one obtains for 6 t  = 0.25 msec. 

Thus even for sophisticated, and properly calibrated radars, a true synchro
nization of 0.2 msec occurs to be adequate since range, azimuth and elevation 
measurements play a role in the needed time synchronization as equation (17) 
indicates. The matter of fact we can see, as mentioned, from (17)that the angular 
errors  gush the needed time synchronization to a larger value. 

In reference 26 it is shown how an error in station time synchronization in
fluences the errors in the final Apollo orbits obtained. In general, under the 
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present assumed Apollo eystems errors  ' e 8  timing errors  of approaimately 
10 msec do not appreciably influence the Apollo earth parking and lunar transfer 
orbits. This is different for lunarorbits where 10 msec do make a difference by 
a factor of 10 as compared to 1msec. See Figure 5 (taken from reference 26). 

It s h d d  be mentioned here that a rather simple and therefore elegant 
method for time synchronization was suggested by JPL,reference 27. In this 
method, the range is measured from 2 stationsusing say a CW ranging system. 
From one of the ranges the %met1of one of the stations can be determined with 
respect to  the other. The error  in time synchronization 6 t  = l/c 6 pos. where 
6pos is the position error  of the spacecraft and c is the speed of light. One can 
see that even a relative large position error, say 3 km (see Figure 3), resultsin 
S t  = 1/3.105-3 3 = = lOpeec, a rather small time synchronization error. 

ID. FREQUENCY SYNCHRONIZATION 

As outlined under I. the frequency of a transmitting system has to be %on
stant" only to a specified value during the travel time of the signal. 

This is, of course, not the case when the transmitted signal is not only re
ceived at the transmitting site but also by a so-called %econdaryfl station. This 
technique, the 3-way Doppler, a llpseudoDopplert1is applied for orbit determina
tion of the lunar orbiter and will be used for the lunar orbit determination during 
the Apollo mission ' e 8  e l1 (See also Figure 6). 

Using exactly the same approach as outlined under chapter I. one canwrite 
a similar equation as (9) but 

where the pseudo Doppler frequency ' at the second station is uD3 (3-way 
Doppler) and 6u12 = (uol - uo2) is the difference frequency (error in frequency 
synchronization) between station 1and 2 (see Figure 5) and ip,is the pseudo 
range rate between the two stations. One has to modi@ (9) since the value 8uI2, 
which is not known,will  be included in the 3-way Doppler (pseudo Doppler) as can 
be seen by inspecting Figure 5. From equation (18) one obtains than for 6u12 
a similar value than 6 uD3. Obviously when uD2is measured, the error 6u12 
is contained in the error  of vD2,namely, 8uD3. Equation (18) can be written as 
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ORBITAL PARAMETERS 
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Figure 5-RMS Velocity Errors During Lunar Orbital Phase (Measurement Biases Updated) 
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where ips represent the 3-way (pseudo) Doppler. 

Example: 

sips = 0.1 cm/s 

v0 = 2.10~CPS. 

than 

is an extreme small  value. 

This number however is obtainable with hydrogen masers 23 * 24 * 25 . Thus a 
3-way Doppler system7e8seems to be one of the first practical systems in the 
field requiring a frequency standard of the quality of a hydrogen maser. It 
should be noted that a frequency difference 6v1 between these two standards 
still result in bias error  in iprwhich is more damaging for the orbit analysis 
(becomes less accurate) than a random error. A bias e r ror  is the same no 
matter how many measurements are made, a random er ror  decreases with N-'l2, 
the number of measurements * . 
IV. STATION LOCATION ERRORS 

Possible location errors, compatible with a range rate system and the 
"yardstick S i c c ,  as well as for a radar system, will be discussed in the follow
ing. These errors  are considered as a limit for these systems based upon their 
accuracy assumptions. 

A. For a CW Range Rate System 

The aim here is to relate a station deviation 6: (the variation of the station 
position vector R) to the range rate deviation 6;. 

From Figure 7 one can see that the range rate er ror  to an er ror  in station 
location can be expressed as: 

s i  = 0 ' 0  s t >  (20) 
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mere To is the unit position vector from.the station to the spacecraft 6 
is the variation of the station velocity vector R' (caused by a station error). . 
Equation (20) is simply the projection of the ground station velocity error  6, 
caused by its location error, onto the position vector ? as Shawn in Figure 7. 

On the other hand, from basic vector analysis, the following holds: 

where 2 is the rotation vector of the earth and R' is the station position vector 
as before (vector from center of earth to station). 

Varying (11)yields 

assuming 83 = 0, or  a constant rotation of the earth during the time interval 
considered. 

Introducing (22) into (20) finally results to a first order approximation in: 

Equation (23) can also be written as 

Si = w 6R sin \y COS cp 

Where \y is the angle between 3 and 6s and cp is the angle between (3x 6:) 
and ;'. Since these two quantities are not known, it could be assumed that their 
product be equal to one, thus making the value of SR somewhat small. The mini
mum variation,or error  in location of a tracking station 6R is then from (24) 

8R = s i  
(25) 

in terms of the fvardstickffS i  and the known m t i t y  of the earth's rotation W. 

Since the product siny cos cp will  never be equal to unity in practice, as 
assumed in equation (25), a quadratic (energy equivalent) average wil l  give a 
more realistic value. That is 

1 sin2 y cos2 cp S w  6cp= -1 ,
4 
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than (25) reads 

. s iK = 4 
w 

Example: Assume again 

S i  = 0.01 c d s  (deep space mission) 

w 7.3 10-5 sec-1 

than 

6 R = 4  10’ = 5.5 Id cm 
7.3 10-5 

In brief , 

SR 5 1/2 meters 

If this can be done, then one can make fulluse of the measurement up to 
an accuracy of 6i = 0.01 cm/s providing the requirements discussed in Chapters 
I. and II. can be met. 

B. For a Radar System 

Again for a radar system, not measuring as such, an other criterion, say 
the position error has to be introduced. In general, if the station position error 
6c is sma3ler than the radar error a;, no improvements can be obtained anymore 
by the radar system. That is 

or 

Using the same reason (neglecting 8 9 )  as for equation (17)one obtains for 
the station error (square root of the number of the components): 
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Where 6 4 = 6 a = 6 E ,  N the number of measurements used to %onBtruct" one 
radar point (a vector, ;(r, a,�) )  and 64, is the angular bias error. 

Example 

Assume as before, N = 10,r = 300km, 64 = 0.02 mrad, 6 4, = 0 and 0.02 
mrad than we obtain:' 

6R = 11 meters 

and 

6R = 3 1/2 meters 

depending on the bias error  64,. A reasonable range of station accuracies is 
believed to be given by these figures. 
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